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Data-Driven Multiagent Systems Consensus
Tracking Using Model Free Adaptive Control

Xuhui Bu, Zhongsheng Hou, Senior Member, IEEE, and Hongwei Zhang

Abstract— This paper investigates the data-driven consensus
tracking problem for multiagent systems with both fixed
communication topology and switching topology by utilizing a
distributed model free adaptive control (MFAC) method. Here,
agent’s dynamics are described by unknown nonlinear systems
and only a subset of followers can access the desired trajectory.
The dynamical linearization technique is applied to each agent
based on the pseudo partial derivative, and then, a distributed
MFAC algorithm is proposed to ensure that all agents can track
the desired trajectory. It is shown that the consensus error can
be reduced for both time invariable and time varying desired
trajectories. The main feature of this design is that consensus
tracking can be achieved using only input–output data of each
agent. The effectiveness of the proposed design is verified by
simulation examples.

Index Terms— Consensus tracking, data-driven design, model
free adaptive control (MFAC), multiagent systems.

I. INTRODUCTION

RECENTLY, distributed coordination of multiagent
systems has been applied to many practical areas,

such as satellite formation, autonomous underwater vehicles,
automated highway systems, and mobile robots. As a result,
an increasing number of researchers have been attracted to this
area of study and considerable efforts have been focused on the
problem of cooperative control for multiagent systems [1], [2].
Consensus is an important issue for multiagent systems. The
task of the consensus problem is to find appropriate control
strategies depending only on local knowledge such that
multiagent systems can agree on certain quantities of interest.

A large number of effective control approaches have been
reported to solve the multiagent consensus problem [3]–[13].
In [3] and [4], consensus problems are considered for dynamic
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agents with both fixed and switching topologies. In [5] and [6],
the problem of consensus for multiagent systems with con-
strained information exchange is considered. In [7] and [8],
the group consensus problem is addressed for multiagent sys-
tems using the leader-following approach. In [9], the consensus
problem is discussed for agents described by double-integrator
dynamics. In [10], a stationary consensus protocol is devel-
oped for multiagent systems with fixed topologies. In [11],
the problem of cooperative output regulation is investigated
for singular heterogeneous multiagent systems. The proposed
cooperative controller depends on the interaction topologies
and the plant parameters. In [12] and [13], consensus is
studied for multiagent systems with stochastically switching
graphs. It is shown that the almost sure consensus can be
obtained in such kind of probabilistic conditions. In [14],
the problem of finite-time consensus for multiagent systems
on a fixed directed interaction graph is discussed. In [15],
the consensus problem for a class of sampled data multiagent
systems with packet losses is investigated. For the state-of-the-
art approaches of consensus problems in multiagent systems,
readers are referred to [16] and [17].

In the aforementioned related studies on consensus control,
the dynamics of agents are usually assumed to be known.
However, it is difficult to establish the exact system model for
practical multiagent systems. Moreover, almost all the dynam-
ics of the agents contain nonlinearities. Therefore, the study
of consensus problems for unknown nonlinear multiagent sys-
tems is a challenging topic. Some studies have been conducted
as follows. Neural networks (NNs) have excellent approx-
imation abilities for nonlinear dynamics. Using this excel-
lent property, adaptive NN consensus control for multiagent
systems with unknown nonlinear dynamics has been studied
in [18]–[21]. However, in these NNs-based adaptive con-
trollers, some training processes and external testing signals
are necessary for controller design. In addition, iterative learn-
ing control is an effective approach for formation or consensus
tracking control for multiagent systems with unknown non-
linear uncertainties [22]–[25]. However, this method is estab-
lished based on the assumption that coordination problems are
required periodic executions or to be repeated.

Model free adaptive control (MFAC) is an effective
approach for discrete-time nonlinear systems with unknown
dynamics [26]–[30]. This approach does not need any
identification of the unknown nonlinear model, and it
proposes a novel dynamical linearization approach using the
so-called pseudo partial derivative (PPD) of the nonlinear
system. This linearization approach can establish the linear
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model for the unknown system along dynamic operation
points. The PPD can be estimated on the basis of input–
output (I/O) measurement data of the nonlinear system, and
then, a model free control law can be designed.

This paper considers the consensus problem for unknown
nonlinear multiagent systems by utilizing the MFAC
approach. The dynamical linearization technique is applied
to each agent based on the PPD, and then a distributed
MFAC algorithm is proposed to ensure that all agents can
track the desired trajectory. In comparison with the existing
literatures, the main challenges and contributions of this paper
are summarized as follows.

1) The consensus problem can be achieved using only real
time measurement I/O data of the multiagent systems.
It does not require any mathematical model or struc-
tural information for agents. This makes sense that
the mathematical models of real-world multiagent sys-
tems are often difficult to obtain accurately, while the
abovementioned previous works [3]–[15] consider the
multiagent systems with known dynamics. Furthermore,
since the model information of agents is not utilized in
the controller design, the proposed consensus method
has strong robustness for unmodeled uncertainties of
agents.

2) To release the requirement of mathematical model,
an alternative solution is adaptive consensus con-
trol approaches based on NNs as done in [18]–[21].
However, these approaches are only proposed for multia-
gent systems with affine nonlinear dynamics. To remove
the restriction, the proposed distributed MFAC approach
in this paper can solve consensus tracking prob-
lem for general nonaffine nonlinear multiagent sys-
tems. In addition, the proposed method does not need
any training process or any external testing signals,
which are usually necessary for adaptive NN consensus
approaches [18]–[21].

The design in this paper is similar to the one in
[27] and [28]. However, this paper considers the problem of
distributed MFAC for multiagent systems. While the control
law in [27] and [28] is designed for a single agent. This
extension provides a new method to design data-driven con-
sensus algorithms for multiagent systems by using MFAC and
presents new problem for MFAC, where the control law is
designed based on the neighbor-based tracking error.

The rest of this paper is organized as follows. Section II
introduces the necessary preliminaries and then gives the
problem formulation. Section III gives the distributed MFAC
multiagent consensus algorithm and then analyzes the tracking
performance. Section IV extends the design to multiagent
systems with switching topologies. Three simulation examples
are given in Section V. In Section VI, some conclusions are
given and possible future work is also discussed.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Preliminaries

The set of real numbers is expressed by R. ‖A‖ is a matrix
norm for a given matrix A ∈ Rn×n . diag(·) denotes the

diagonal matrix and I is an identity matrix with an appropriate
dimension. In multiagent systems, graph theory is an effective
tool to model the interaction topologies. Next, we provide a
brief introduction to directed graphs in algebraic graph theory.
Let G = (V ,E ,A ) be a weighted directed graph, where
V = {1, 2, . . . , N } is the set of vertices, E ⊆ V ×V is the set
of edges, and A is the adjacency matrix. Let V also be the
index set expressing agents. If the agent j can receive message
from the agent i , then (i, j) ∈ E and j is called the child of i
and i is the parent of j . Ni = { j ∈ V |( j, i) ∈ E } denotes the
neighborhood of the agent i . A = (ai, j ) ∈ RN×N denotes the
weighted adjacency matrix of G , where ai,i = 0, ai, j = 1 if
( j, i) ∈ E ; otherwise ai, j = 0. The Laplacian matrix of G is
defined as L = D −A , where D = diag( d in

1 d in
2 · · · d in

N ) and
d in

i = ∑N
j=1 ai, j is called the in-degree of vertex i . If there

exists a path between any pair of two vertices, then the graph
is said to be strongly connected.

B. Problem Formulation

In existing studies, the consensus problem is often consid-
ered for a group of agents with identical dynamics. However,
heterogeneity is the intrinsic property for multiagent systems.
Even if agents have same types and similar structures, it is
impossible that they have identical parameters. Therefore,
the problem of consensus for heterogeneous agents is more
challenged. Consider a heterogeneous multiagent system with
N agents. Their interaction topology is given by G . Assume
that the agent i is considered to have the following nonlinear
dynamics:

yi (k + 1) = fi (yi(k), ui (k)), i = 1, 2, . . . , N (1)

where yi (k) ∈ R is the output, ui (k) ∈ R is the control input
and fi (·) is an unknown nonlinear function, respectively.

Give a desired consensus tracking trajectory yd(k). It is
assume that yd(k) only can be accessed by a subset of agents.
In addition, we assume that the desired trajectory is generated
by a virtual leader and index it as vertex 0. Then, we can
obtain a directed graph Ḡ = (V ∪ {0}, Ē , ¯A ) consisting of
N + 1 agents, where Ē is the edge set and ¯A is the weighted
adjacency matrix of Ḡ .

The following assumptions for nonlinear dynamics are given
to facilitate our analysis.

Assumption 1: The partial derivative of nonlinear
function fi (·) with respect to ui (k) is continuous.

Assumption 2: The model (1) is generalized Lipschitz, that
is, if �ui (k) �= 0, |�yi(k + 1)| ≤ b |�ui (k)| holds for any k,
where�yi(k + 1) = yi (k + 1) − yi (k),�ui (k) = ui (k) −
ui (k − 1) and b is a positive constant.

Remark 1: The reasonability of the above two assumptions
for practical nonlinear systems has been discussed in [24].
Hence, they are also acceptable for practical multiagent sys-
tems. Assumption 1 is a general condition for controller
design. Assumption 2 means that the change rate of agent’s
output corresponding to the change rate of the agent’s control
input is bound. In view of system energy, if changes of the
control input energy are finite, the output energy change rates
cannot tend to infinity.
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In the following theorem, we will demonstrate that, if the
agent’s dynamic stratifies Assumptions 1 and 2, then the
nonlinear dynamic can be described as a dynamic linearization
model [27]. Then, the distributed MFAC algorithm can be
designed based on the model.

Theorem 1 [27]: Consider that the agent’s dynamic (1)
satisfies Assumptions 1 and 2. If �ui (k) �= 0 holds, then
system (1) can be described as a compact form dynamic
linearization model

�yi (k + 1) = φi (k)�ui(k) (2)

where φi (k) is a variable named pseudo-partial-derivative and
it satisfies |φi (k)| ≤ b.

Define the following distributed measurement output:
ξi (k) =

∑

j∈Ni

ai, j (y j (k) − yi (k)) + di (yd(k) − yi (k)) (3)

where ai, j is the ( j, i)th entry in the adjacency matrix and
Ni is the neighborhood set of the agent i . If the agent i can
receive the desired trajectory, di = 1, i.e., {0, i} ∈ Ē or there
is an edge from the virtual leader to the agent i . Otherwise,
di = 0.

Let ei (k) = yd(k) − yi (k) denote the tracking error. The
objective of this paper is to find an appropriate control
law only using the I/O data of the agents, such that the
outputs of all agents can track the reference trajectory
yd(k) when only some of agents can access the desired
trajectory.

Assumption 3: The communication graph Ḡ is a fixed
strongly connected graph and at least one of the follower
agents can access the leader’s trajectory.

Remark 2: The communication condition in Assumption 3
is a necessary requirement for the solvability of the consensus
tracking problem. If there is an isolated agent, which does not
even know the control objective, it is impossible for that agent
can follow the leader’s reference trajectory.

Assumption 4: The PPD φi (k) > ς , i = 1, 2, 3, . . . , N
(or φi (k) < −ς) holds for all k, where ς is an arbitrarily
small positive constant. Without loss of generality, we assume
φi (k) > ς in this paper.

Remark 3: The above assumption indicates that the agent
output does not decrease as the corresponding control input
increases, which may be treated as a type of linear-like
characteristic. This assumption implies that the sign of the
control direction is known, or at least not changed. A sim-
ilar assumption can also be found in model-based control
approaches for the control direction. It is also a reasonable
assumption for many practical multiagent systems, such as
mobile robots and unmanned air vehicles.

III. MAIN RESULTS

For the above consensus tracking objective, the following
distributed MFAC algorithms is presented:

φ̂i (k) = φ̂i (k − 1) + η�ui (k − 1)

μ + |�ui (k − 1)|2
×(�yi(k) − φ̂i (k − 1)�ui (k − 1)) (4)

φ̂i (k) = φ̂i (1), if |φ̂i (k)| ≤ ε or

sign(φ̂i (k)) �= sign(φ̂i (1)) (5)

ui (k) = ui (k − 1) + ρφ̂i (k)

λ + |φ̂i (k)|2 ξi (k). (6)

where η, ρ are the step size,μ > 0 and λ > 0 are weight
factors. φ̂i (1) is the initial value of φ̂i (k) and φ̂i (k) is the
estimated value of φi (k). ε is a small positive constant.

Remark 4: In the parameters estimation law (4), the data
�yi(k) is used to estimate φ̂i (k). The benefit of the scheme is
that the convergence of parameters estimation law (4) can be
guaranteed as shown in [27] and [28]. The reset algorithm (5)
is given to guarantee that the parameter estimation algorithm
can track time-varying parameter with stronger ability. In the
control law (6), the distributed measurement output ξi (k) for
agent i is used to update the control input ui (k). Hence, the
algorithm is a kind of distributed MFAC approach.

Remark 5: We can see that no agent model dynamics
are included in the distributed MFAC scheme. The PPD
parameters estimation algorithm and distributed control law
are designed only depending on the measured I/O data of
multiagent systems. Hence, it is a data-driven control approach
for solving multiagent systems consensus tracking problem.

Remark 6: As mentioned in [27] and [28], the para-
meter estimation law (4) is to minimize the perfor-
mance index J (φi(k)) = |�yi(k) − φ̂i (k)�ui (k − 1)|2 +
μ|φ̂i (k) − φ̂i (k − 1)|2. η is the step size and often selected
as 0 < η < 1. μ is a weighting factor and selected as μ > 0.
In the reset algorithm (5), ε is a small positive constant and
often selected as 10−4 or 10−5. Different from [27] and [28],
here the control law (6) is to minimize the performance index
J (ui (k)) = |ξi (k)|2 +λ|ui (k) − ui (k − 1)|2. λ is an important
parameter for MFAC systems. From the existing theoretical
analysis, it is shown that the stability of the MFAC system
can be guaranteed by choosing a suitable λ. ρ is a controller
parameter that can determine the stability condition. We will
provide the condition in the following Theorems.

We first give the following lemma, which is used for the
stability analysis.

Lemma 1 [31]: Let W (k) denote a time varying irreducible
substochastic matrix with positive diagonal entries and W
denotes the set of all possible W (k). Then, we have

‖W (P)W (P − 1) · · · W (1)‖ ≤ β

where 0 < β < 1 and W (k), k = 1, 2, . . . , P , are P matrices
arbitrarily selected from W .

Now, we give the stability of the proposed MFAC algorithm
in the following Theorem.

Theorem 2: Consider that the multiagent system (1) satisfies
Assumptions 1, 2, 4 and the communication graph satisfies
Assumption 3. Let the proposed MFAC algorithm (4)–(6) be
used. Assume that the desired reference trajectory yd(k) is
time invariable, i.e., yd(k) = const. If we select ρ such that it
satisfies the condition

ρ <
1

maxi=1,...,N
∑N

j=1 ai, j + di
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then there exists a λmin > 0 and λ > λmin such that
the tracking error ei (k) converges to 0 as k → ∞ for all
i = 1, 2, . . . , N .

Proof: The proof comprises three parts as follows.
Part (i) (Boundedness of the Estimation Value φ̂i (k)): Define

φ̃i (k) = φ̂i (k) − φi (k). From Theorem 1 and parameter
estimation algorithm (4), we have

φ̃i (k) =
(

1 − η�ui (k − 1)2

μ + |�ui (k − 1)|2
)

×φ̃i (k − 1) + φi (k − 1) − φi (k). (7)

We can obtain from (7) that

|φ̃i (k)| ≤
∣
∣
∣
∣

(

1 − η�ui (k − 1)2

μ + |�ui (k − 1)|2
)∣

∣
∣
∣ |φ̃i (k − 1)|

+ |φi (k − 1) − φi (k)|. (8)

Since |�ui(k)| �= 0, by selecting η, μ properly, such as
0 < η ≤ 1 and μ ≥ 0, there exists a constant q1 such that

0 <

∣
∣
∣
∣

(

1 − η�ui (k − 1)2

μ + |�ui(k − 1)|2
)∣

∣
∣
∣ ≤ q1 < 1 (9)

holds. Since |φi (k)| ≤ b, considering Assumption 4, we can
obtain |φi (k − 1) − φi (k)| ≤ b.

From (8) and (9), we have

|φ̃i (k)| ≤ q1|φ̃i (k − 1)| + b

≤ · · · ≤ qk−1
1 |φ̃i (1)| + b

(
1 − qk−1

1

)

1 − q1
(10)

which indicates that φ̃i (k) is bounded. Hence, φ̂i (k) is also
bounded since φi (k) is bounded.

Part (ii) (The Convergence of Tracking Error): From (3),
ξi (k) can be rewritten in terms of tracking errors as follows:

ξi (k) =
∑

j∈Ni

ai, j (ei (k) − e j (k)) + diei (k). (11)

Define the following column stack vectors:
y(k) = [y1(k) y2(k) · · · yN (k)]T

e(k) = [e1(k) e2(k) · · · eN (k)]T

ξ(k) = [ξ1(k) ξ2(k) · · · ξN (k)]T

u(k) = [u1(k) u2(k) · · · uN (k)]T .

In this case, (11) can be described in a compact form as

ξ(k) = (L + D)e(k) (12)

where D = diag(d1, d2, . . . , dN ).
By noting the definition in (12), we can rewritten the

distributed MFAC algorithm (6) as

u(k) = u(k − 1) + ρH1(k)(L + D)e(k) (13)

where

H1(k) = diag

(
φ̂1(k)

λ + |φ̂1(k)|2
φ̂2(k)

λ + |φ̂2(k)|2 · · · φ̂N (k)

λ + |φ̂N (k)|2
)

.

Following a similar way, we can also describe (2) as:
y(k + 1) = y(k) + Hφ(k)�u(k) (14)

where

�u(k) = u(k) − u(k − 1)

Hφ(k) = diag(φ1(k) φ2(k) · · · φN (k)).

We can substitute (13) into (14) to get

e(k + 1) = e(k) − ρHφ(k)H1(k)(L + D)e(k)

= (I − ρ�(k)(L + D))e(k). (15)

where � (k) = Hφ(k)H1(k) = diag(ϑ1(k) ϑ2(k) · · · ϑN (k))
and

ϑi (k) = φi (k)φ̂i (k)

λ + |φ̂i (k)|2 , i = 1, 2, . . . N.

Denote  (k) = � (k)(L + D). From (15), we
can obtain that if ‖I − ρ (k)‖ < 1 for all k, then
limk→∞ ‖e(k + 1)‖ = 0.

Part (iii) (Deriving Convergence Condition at the Agent
Level): In the following, we derive the condition at the agent
level.

Since φi (k) and φ̂i (k) are bounded for all i = 1, 2, . . . , N ,
there exists a bounded constant λmin > 0 such that if λ > λmin,
the following inequality holds:

0 < ϑi (k) = φi (k)φ̂i (k)

λ + |φ̂i (k)|2 ≤ bφ̂i(k)

2
√

λ|φ̂i (k)| <
b

2
√

λmin
< 1.

On the other hand, since the communication graph is
strongly connected, I −ρ (k) must be an irreducible matrix.
If we select ρ such that it satisfies the condition

ρ <
1

maxi=1,...,N
∑N

j=1 ai, j + di

then ρ is less than the reciprocal of greatest diagonal entry of
L + D. Notice that 0 < ϑi (k) < 1 for all i = 1, 2, . . . , N ,
we can obtain at least one row sum of I − ρ (k) is strictly
less than one. Hence, I −ρ (k) is an irreducible substochastic
matrix with positive diagonal entries.

We can obtain from (15) that

e(k + 1)

≤ ‖I − ρ(k)‖‖e(k)‖
≤ ‖I − ρ(k)‖‖I − ρ(k − 1)‖‖e(k − 1)‖
≤ ‖I − ρ(k)‖‖I − ρ(k − 1)‖ · · · ‖I − ρ(1)‖‖e(1)‖.

(16)

By applying Lemma 1, group every P matrices product
together in (16), we can obtain

‖e(k + 1)‖ ≤ β� k
P ‖e(1)‖

where �· stands for the floor function. Hence, we can con-
clude that limk→∞ ‖e(k + 1)‖ = 0.

This completes the proof.
Remark 7: We can see that the condition in Theorem 2

depends on communication graph G because ai, j , di are the
elements of L and D. Therefore, Theorem 2 reveals the rela-
tionship between convergence property and communication
topology. Under such a condition, the problem of consensus
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tracking can be handled by using the distributed MFAC
scheme.

Next, we consider the time varying desired trajectory. Define
the following column stack vectors:

yd(k) = [yd(k) yd(k) · · · yd(k)]T
1×N .

Denote �yd(k) = yd(k + 1) − yd(k), since yd(k) is bound,
we have ‖�yd(k)‖ < by , where by is a positive constant. The
result of this case is summarized in the following Theorem.

Theorem 3: Consider that the multiagent system (1) satisfies
Assumptions 1, 2, and 4 and communication graph satisfies
Assumption 3. Let the proposed MFAC algorithm (4)–(6) be
used. Assume that the desired trajectory yd(k) is time varying.
If we select ρ such that it satisfies the condition

ρ <
1

maxi=1,...,N
∑N

j=1 ai, j + di

then there exists a λmin > 0 and λ > λmin such that the
tracking errors are uniformly ultimately bounded and the
ultimate bound depends on the variation of desired trajectory.

Proof: In this case, the tracking error equation in (15)
becomes

e(k + 1) = (I − ρ(k))e(k) + �yd(k). (17)

We can obtain from (17) that

‖e(k + 1)‖
≤ ‖I − ρ(k)‖‖e(k)‖ + ‖�yd(k)‖
≤ ‖I − ρ(k)‖‖I − ρ(k − 1)‖‖e(k − 1)‖

+ ‖I − ρ(k)‖‖�yd (k − 1)‖ + ‖�yd(k)‖
≤ ‖I − ρ(k)‖‖I − ρ(k − 1)‖ · · · ‖I − ρ(1)‖‖e(1)‖

+ ‖I − ρ(k)‖‖I − ρ(k − 1)‖ · · · ‖I − ρ(2)‖by

+ . . . + ‖I − ρ(k)‖by + by . (18)

By applying Lemma 1, group every P matrices product
together in (18), we can obtain

‖e(k + 1)‖
≤ β

⌊
k
P

⌋

‖e(1)‖
+

(

β

⌊
k−1

P

⌋

+ β

⌊
k−2

P

⌋

+ · · · + β

⌊
1
P

⌋

+ β

⌊
0
P

⌋)

by . (19)

Donate α (k) = β�(k P/P) + · · · + β�((k+1)P−1/P), using the
property of the floor function, we can obtain

α (k) = (P − 1)βk .

Note that

lim
k→∞

(

β

⌊
k−1

P

⌋

+ β

⌊
k−2

P

⌋

+ · · · + β

⌊
0
P

⌋)

= lim
k→∞

(

β

⌊
(k+1)P−1

P

⌋

+ β

⌊
(k+1)P

P

⌋

+ · · · + β

⌊
0
P

⌋)

= lim
k→∞(α(k) + α(k − 1) + · · · + α(0))

= (P − 1) lim
k→∞(βk + βk−1 + · · · + β0)

= (P − 1)

1 − β
(20)

from (19) and (20), we can obtain

lim
k→∞ ‖e(k + 1)‖ = (P − 1)

1 − β
by . (21)

Hence, the tracking error is uniformly ultimately bounded
and the bound depends on by .

This completes the proof.
Remark 8: It can be seen that, if the desired trajectory is time

varying, the tracking error converges to a bound depending on
the bound of �yd(k). If by = 0, then limk→∞ ‖e(k)‖ = 0.
In many practical tasks, the desired outputs are often slowly
varying trajectories. This means that the bound of �yd(k) is
small and the tracking error will converge to a small bound.

IV. EXTENSION TO SWITCHING TOPOLOGY

In this section, the proposed design is extended to the
multiagent system with switching topology.

Let G (k) denote a time-varying graph depending on k.
The adjacency matrix associated with G (k) is denoted by
A (k) = (ai, j (k)) ∈ RN×N and the Laplacian of G (k) is
denoted by L(k). The neighborhood of the i th agent is denoted
by the set Ni (k). To describe the switching topology, let
Gσ = {G1,G2, . . . GM } denote the set of all directed graphs
for the agents, where M ∈ Z+ denotes the total number of
possible interaction graphs. The Laplacian of Gl is denoted by
Ll for l = 1, 2, . . . , M . We also view the desired trajectory as
a virtual leader, and index it by the vertex 0 in the graph
representation. In this case, the complete information flow
of the whole interaction topology can be described as Ḡ (k).
In addition, Ḡσ = {Ḡ1, Ḡ2, . . . ḠM } denotes the set of the finite
possible interaction graphs for Ḡ (k).

In this case, the definition in (3) becomes

ξi (k) =
∑

j∈Ni (k)

ai, j (k)(y j (k) − yi (k))

+ di(k)(yd(k) − yi (k)). (22)

Assumption 5: The communication graph Ḡl is a fixed
strongly connected graph and at least one of the follower
agents can access the leader’s trajectory for all l = 1, 2, . . . M .

Denote D(k) = diag(d1(k), d2(k), . . . , dN (k)) and Dl is the
matrix defined in Section III for the interaction graph Ḡl . Then,
we can give the following result.

Theorem 4: Consider that the multiagent system (1) satis-
fies Assumptions 1, 2, 4 and communication graph satisfies
Assumption 5. Let the proposed MFAC algorithm (4)–(6)
be used. Assume that the desired trajectory yd(k) is time
invariable, that is yd(k) = const. If we select ρ such that
it satisfies the condition

ρ <
1

maxi=1,2,...N,l=1,2,M
∑N

j=1 al
i, j + dl

i

where al
i, j is the element of Ll and dl

i is the element of Dl .
Then there exists a λmin > 0 and λ > λmin such that
the tracking errors ei (k) converge to 0 as k → ∞ for all
i = 1, 2, . . . , N .

Proof: The compact form of (22) can be described as

ξ(k) = (L(k) + D(k))e(k). (23)
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Then, the tracking error in (15) becomes

e(k + 1) = (I − ρ�(k)(L(k) + D(k)))e(k). (24)

Denote �(k) = � (k)(L(k) + D(k)). From (24),
we can obtain that if ‖I − ρ� (k)‖ < 1 for all k, then
limk→∞ ‖e(k + 1)‖ = 0.

Since all the possible interaction graphs are strongly con-
nected, I − ρ� (k) must be an irreducible matrix. Note that
the set {L1 + D1, L2 + D2, . . . , L M + DM } contains all the
possible matrices of L(k) + D(k). If we choose ρ such that it
satisfies the condition

ρ <
1

maxi=1,2,...N,l=1,2,M
∑N

j=1 al
i, j + dl

i

then ρ is less than the reciprocal of greatest diagonal entry of
all the possible matrices L(k) + D(k). Therefore, I − ρ�(k)
is an irreducible substochastic matrix with positive diagonal
entries. Similar to the proof of Theorem 1, there exists a
λmin > 0 and λ > λmin such that the tracking errors ei (k)
converge to 0 as k → ∞ for all i = 1, 2, . . . , N .

This completes the proof.
Remark 9: From Theorem 4, we can observe that, it is pos-

sible to derive consensus tracking for multiagent systems with
a time invariable desired trajectory, although the interaction
graph between agents is time varying. Similarly, the tracking
results for a time varying desired trajectory can also be given
by following the result of Theorem 3, which has been omitted
here.

Remark 10: From Theorems 2 and 3, we can conclude that
the distributed MFAC has several attractive properties. First,
distributed MFAC uses only the real time measurement I/O
data of the each agent. No mathematical model of the agent’s
dynamic is needed, which implies that we can develop a
generic consensus control algorithm for a certain class of mul-
tiagent systems. Second, distributed MFAC does not require
any training process and external testing signals, which are
necessary for NN-based nonlinear adaptive consensus tracking
control approaches. Third, since the agent’s dynamic model
information does not include in the distributed MFAC scheme,
and then it has strong robustness for traditional unmodeled
dynamics comparing with the other model based consensus
control methods. Finally, the distributed MFAC is simple and
easily implemented with small computational cost.

Remark 11: In this paper, the distributed MFAC is consid-
ered for multiagent systems with single input and single output
nonlinear dynamics. However, many practical systems contain
multiple inputs and multiple outputs. Due to the complexity of
MIMO nonlinear systems, the proposed design in this paper
cannot be directly extended to MIMO systems. One of the
main difficulties in extending the proposed design to MIMO
systems is input coupling. Hence, the distributed MFAC design
for MIMO multiagent systems will be discussed in our future
work.

V. SIMULATION EXAMPLE

Example 1: In this example, we perform numerical simula-
tions to illustrate the proposed consensus tracking results for
fixed communication topology. Consider a network comprising

Fig. 1. Communication topology among agents of Example 1.

four follower agents and the models are governed by

Agent 1: y1(k + 1) = y1(k)u1(k)

1 + y2
1(k)

+ u1(k)

Agent 2: y2(k + 1) = y2(k)u2(k)

1 + y3
2(k)

+ 0.5u2(k)

Agent 3: y3(k + 1) = y3(k)u3(k)

1 + y2
3(k)

+ 0.9u3(k)

Agent 4: y4(k + 1) = y4(k)u4(k)

1 + y5
4(k)

+ 0.8u4(k).

It can be seen that the considered agents are heterogeneous
since their dynamics are different from each other. In this
example, the dynamics are all unknown. They are given here
only to generate the I/O data for the multiagent system and no
model information is used in the distributed MFAC algorithm.

As the illustration shows in Fig. 1, the virtual leader
is denoted as vertex 0. It can be observe that only
agent 1 and 3 can receive information from the leader.
Although agents 2 and 4 cannot receive the information of
the leader, the communication graph is strongly connected.
Assume that the information exchange among agents is
directed and fixed. Then, the Laplacian matrix of the graph
is given as follows:

L =

⎡

⎢
⎢
⎣

1 0 0 −1
−1 2 −1 0
0 −1 1 0

−1 0 −1 2

⎤

⎥
⎥
⎦

and D = diag(1 0 1 0). The reciprocal of greatest diagonal
entry of L + D is 0.5. If we select the controller parameters
as ρ = 0.3, then the convergence condition in Theorem 2 and
Theorem 3 is satisfied for all i = 1, 2, 3, 4. We consider the
following two different desired trajectories.

A. Time Invariable Desired Trajectory

The desired trajectory is given as

yd(k) =
{

2, 0 < k < 200

0.5, 200 ≤ k < 400.

Initial conditions are chosen as ui (1) = 0, φ̂i (1) = 2 for all
agents and y1(1) = 0.5, y2(1) = 2.5, y3(1) = 3.5, y4(1) = 4
in this simulation. The controller parameters are selected as
η = 1, μ = λ = 0.5, ε = 10−5. Figs. 2–4 give the consensus
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Fig. 2. Consensus tracking errors for time invariable desired trajectory
(Example 1).

Fig. 3. Tracking performance for time invariable desired trajectory
(Example 1).

Fig. 4. PPD estimation for time invariable desired trajectory (Example 1).

tracking errors, system outputs, and the PPD estimation of all
agents respectively. It can be observe that followers’ outputs
have large deviations from the desired one at the beginning
time. However, the tracking errors can be reduced gradually

Fig. 5. Consensus tracking errors for time varying desired trajectory
(Example 1).

Fig. 6. Tracking performance for time varying desired trajectory (Example 1).

and the consensus tracking is achieved after time instant
k = 50. Even though the desired trajectory is varied at
k = 200, the consensus tracking objective can be also achieved
after k = 250.

B. Time Varying Desired Trajectory

In this case, we consider the following desired trajectory:

yd(k) = sin

(
πk

250

)

, 0 ≤ k ≤ 1000.

Initial conditions are chosen as ui (1) = 0, y1(1) = 0.5,
φ̂i (1) = 2 for all agents and controller parameters are selected
as η = μ = 1, λ = 0.1, ε = 10−5. Figs. 5–7 give the con-
sensus tracking errors, system outputs and the PPD estimation
of all agents, respectively. It can be found that the tracking
errors are also gradually reduced by the MFAC controllers.
However, the tracking errors cannot converge to 0, but they
converge to a small bound. Obviously, this verifies that the
consensus tracking result in Theorem 3 can be accomplished
in the face of time varying desired trajectory.

In addition, to demonstrate the performance of the proposed
algorithm, we perform a simulation by using consensus
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Fig. 7. PPD estimation for time varying desired trajectory (Example 1).

Fig. 8. Tracking performance using P-type distributed control algorithm
(Example 1).

control algorithm with a fixed gain. Consider the P-type
distributed control algorithm ui (k) = ui (k − 1) + Kiξi (k).
In the simulation, the same initial conditions are applied
and Ki = 0.8 is selected for all agents. Fig. 8 shows
the simulation result of tracking performance. From the
comparison between Figs. 6 and 8, we can obviously see the
effective of the distributed MFAC algorithm.

Example 2: In this example, we perform a simulation
for multiagent systems with switching topologies. Consider
the same multiagent system in example 1, here the com-
munication graphs are given to switch over three states,
i.e., Gσ = {G1,G2,G3}, where the directed graphs are given
in Fig. 9. To simulate the switching of the network topologies,
we produce a stochastic switching signal σ (k) as a func-
tion of k, which takes the values of 1, 2, and 3 randomly.
Fig. 10 shows the switching signal σ (k) in this simulation.

We also adopt 0–1 weighting in the adjacency matrix. Select
the controller parameters as ρ = 0.3, it can be seen that the
condition in Theorem 4 is satisfied for all i = 1, 2, 3, 4 and
l = 1, 2, 3. Here, we consider the time invariable desired
trajectory in example 1 and the same initial conditions are
utilized for all agents. Figs. 11 and 12 show consensus tracking
errors and the system outputs of all agents respectively. It can

Fig. 9. Communication topology among agents of Example 2.

Fig. 10. Switching signal among there different communication graphs
(Example 2).

be observed from these figures that the agents are enabled to
track the desired trajectory after some time steps. This verifies
the consensus tracking result in Theorem 4. Furthermore, from
the comparison between tracking errors in Figs. 2 and 11,
we can see that the curve in Fig. 11 is not smooth, which is
caused by the switching topology.

Example 3: In this example, we perform a simulation for
realistic mechanical systems, which comprise six permanent
magnet dc linear motors. The dynamic of every motor is
described as follows [32], [33]:

⎧
⎨

⎩

ẋ(t) = υ(t)

υ̇(t) = u(t) − ffriction(t) − fripple(t)

m

(25)

where ffriction(t) is the friction force (N), fripple(t) is the ripple
force (N), u(t) is the developed force (N), m is the combined
mass of translator and load, x(t) is position (m) and υ (t) is
the speed (m/s), t is continuous time (s).

The friction and ripple forces are assumed to be modeled
as follows:

ffriction(t) = ( fc + ( fs − fc)e
−(ẋ/ẋδ)

δ + fυ ẋ)sgnẋ

fripple(t) = b1 sin (ω0x(t))

where fs is the level of static friction, fc is the minimum
level of Coulomb friction, xδ and fυ are lubricant and load
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Fig. 11. Consensus tracking errors of Example 2.

Fig. 12. Tracking performance of Example 2.

parameters. δ is an additional empirical parameter. In the
simulation, these parameters are selected as: m = 0.59 kg,
xδ = 0.1, δ = 1, fc = 10 N, fs = 20 N, fυ = 10 N · s · m−1,
b1 = 8.5 N, ω0 = 314 s−1.

Denote x1(t) = x(t), x2(t) = υ (t), we can describe (25)
as the following nonlinear dynamic:
⎧
⎪⎪⎨

⎪⎪⎩

[
ẋ1(t)

ẋ2(t)

]

=
⎡

⎣
x2(t)

− ffriction(t) + fripple(t)

m

⎤

⎦ +
⎡

⎣
0
1

m

⎤

⎦ u(t)

y(t) = x2(t).

The dynamics are also unknown. They are given here only
to generate the I/O data for the multiagent system. The desired
velocity is given as

yd(t) = 10 sin π t, t ∈ [0, 1].
By considering the sampling time to be h = 0.001, we obtain
T = 1000.

The information flow of the agents is shown in Fig. 13.
Select the controller parameter as ρ = 0.2, it can be observed
that the condition in Theorem 3 is satisfied for all agents.
In the simulation, the initial conditions are selected as
x1

i (1) = x2
i (1) = 0, ui (1) = 0, φ̂i (1) = 1 for all agents.

Fig. 13. Communication topology among agents of Example 3.

Fig. 14. Tracking performance without measurement noises (Example 3).

Fig. 15. Tracking performance with measurement noises (Example 3).

The controller parameters are chosen as η = 1, μ = λ = 0.5,
ε = 10−5. Fig. 14 gives the system outputs of all agents.
We can see that the consensus tracking error can be decreased
to vary within a small bound by distributed MFAC. This
observation also verifies the consensus tracking result in
Theorem 3. Furthermore, we consider that there exists output
measurement noise for all agents. The measurement noise
is a random signal and its bound belongs to [−0.05, 0.05].
From Fig. 15, which shows system outputs of all agents in
this case, we can see that the outputs of motors can also
follow the desired trajectory with a bound error. However,
there exist some deviations in output curves that are caused
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by stochastic measurement noises. The deviations cannot be
canceled since the noise is completely unpredictable.

VI. CONCLUSION

In this paper, the data-driven consensus tracking control
has been considered for multiagent systems with unknown
nonlinear dynamics. The dynamical linearization technique
has been applied to each agent based on the PPD, and then,
a distributed MFAC algorithm has been proposed to ensure
that all agents can track the desired trajectory. It can be
observe that, for the unknown nonlinear multiagent system,
the proposed approach only requires the I/O data of agents
rather than the system models. Three examples for multiagent
systems have been provided to validate the effectiveness of the
proposed method. This paper not only brings novel data-driven
design for the problem of consensus but also significantly
extend the MFAC approach to multiagent systems. In our
future work, we will consider the MFAC consensus problem
for MIMO multiagent systems.
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